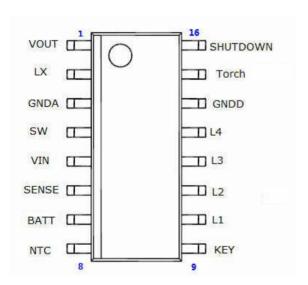


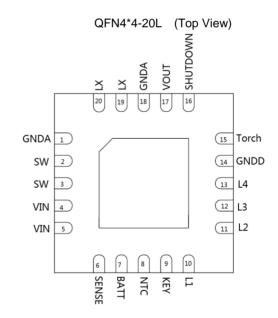
四段电量显示的单芯片移动电源专用 IC

■ 产品概述

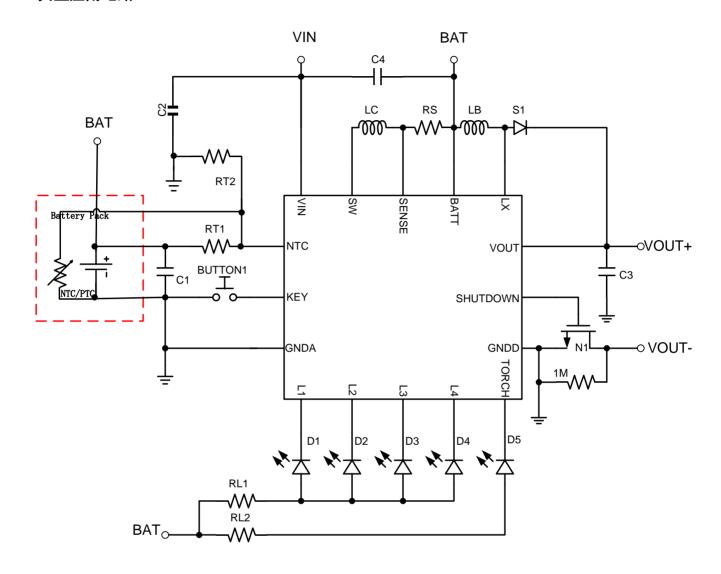
LN1001 是一款集充电管理、电量检测、LED 电量显示、LED 手电、升压 DC/DC 等一体的单芯片专用 IC,适用于单节锂离子/锂聚合物电池的充放电管理,可以应用于移动电源,手持设备,PDA,智能手机等。它集成的高效同步 BUCK 锂电池充电管理,最大可以达到 2A 的充电电流;集成的升压 DC/DC 可以输出最大达到 1.5A 的放电电流,并且智能判断负载插入和拔除,进行自动升压和自动关机;集成的电池电量检测和 4 段显示,无论在充电还是放电的状态,均可以有效地指示电池当前剩余的电量。通过唯一的按键,可以很方便地控制升压的启动和手电的开关。手电 LED 可以输出最大 50mA 的电流。LN1001 还集成了电池温度检测,电池电压低电保护,输出过流/过压/过温/短路等保护电路,确保芯片和系统安全工作。

■ 用途


- 移动电源单芯片解决方案
- 单节锂离子/锂聚合物电池充电器
- 固定 5V 升压驱动器


■ 产品特点

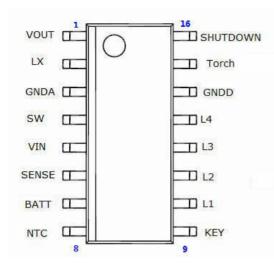
- 单按键控制
- 2A 充电电流
- 1.5A 放电电流
- 集成 50mA 手电应用
- 设备充满或拔除时 16 秒自动关机
- 4段式电量指示
- 特机功耗低,几乎为 0 (小于 1uA)
- 电池电压 3.1V 以下自动关闭输出


■ 封装

■ 典型应用电路

注: L1 为最低电量点,也是 L2~L4 的电流参考,必需接 LED。

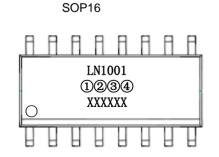
■ 订购信息


LN1001 ①2-3

数字项目	符号	描述
1	S	SOP16 封装
(1)	Q	QFN4*4-20L 封装
(a)	R	编带正编
2	L	编带反编
3	G	Green,无卤封装

注意: 反向编带和其他封装需定制,请联系本司销售部。

■ 引脚配置



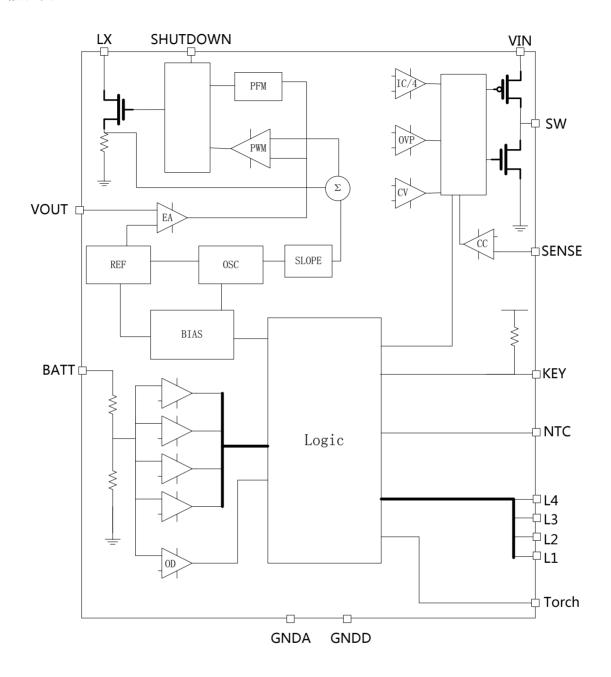
	X1 SHUTDOWN 120 118 117 119 120 120 130 130 130 130 130 130 130 130 130 13	
GNDA 1		15 Torch
SW 2		14 GNDD
SW 3		13 L4
VIN 4		12 L3
VIN 5		11 L2
	6 7 8 9 10 L1 SENSE	

SOP 引脚号	QFN 引脚号	引脚名	功能描述
1	17	VOUT	升压输出端口,5V
2	19、20	LX	升压电感端口
3	18、1	GNDA	模拟地/功率地
4	2、3	SW	充电器电感端口
5	4、5	VIN	充电器电源输入端口
6	6	SENSE	充电器电流检测端口
7	7	BATT	电池接入端
8	8	NTC	电池温度检测端口,外接 NTC 电阻
9	9	KEY	按键输入端口,内置上拉电阻
10	10	L1	电量指示 1 输出端口,恒流 3mA
11	11	L2	电量指示 2 输出端口,恒流 3mA
12	12	L3	电量指示 3 输出端口,恒流 3mA
13	13	L4	电量指示 4 输出端口,恒流 3mA
14	14	GNDD	数字地
15	15	Torch	LED 手电输出端口,最大 50mA
16	16	SHUTDOWN	负载通路控制端口

■ 打印信息

● 封装形式

QFN20


LN1001
(1/2/3/4)
XXXXXXX

①②③④ 代表工艺版次和内部分类号 XXXXXX 代表生产批号

http://www.goodark.asia

■ 功能框图

■ 绝 对 最 大 额 定 值

项目	符号	绝对最大额定值	单位
输入电压	VIN	-0.3-6.5	
BATT电压	VBAT	-0.3-6.5	V
VOUT电压	VOUT	-0.3-6.5	V
其他端电压	VOTHERS	-0.3-6.5	
LX开关电流	ILX	5	А
SW开关电流	ISW	±2.5	А
工作温度范围	T _{OP}	-45-85	°C
引脚焊接温度(10 秒)	T _{LEAD}	300	
ESD 放电能力(HBM)	V_{ESD}	4000	V

注意: 绝对最大额定值是指在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤

■ 电学特性参数

测试条件 VBATT=3.6V, VOUT=5V, VIN=5V, RS=0.05Ω (Ta=25 ℃除非特殊指定)

项目	符号	条件	最小值	典型值	最大值	单位
Key 端开启电压	V _{KEY}	VBATT=3.6V	-	-	1.2	V
Key 端上拉电阻	R _{KEY}		-	500K	-	Ω
NTC 高温关断电压	V _{HOT}		1.57	1.67	1.77	V
NTC低温关断电压	V _{COLD}		3.23	3.33	3.43	V
待机电流	I _{STANDBY}		-	-	1	uA
BOOST DC-DC 参数						
输入电压	V_{BATT}	IOUT=1A	3.2	-	5	V
输出电压	V_{OUT}	IOUT=1A	4.9	5.0	5.1	V
关断电流	I _{OFF}		-	0.01	1	μA
无负载电流	Ic	VBATT=3.6V, VOUT=5V	-	200	-	μA
开关频率	FS	IOUT=1A	1.25	1.5	1.75	MHz
最大占空比	D _{MAX}	VBATT=3.6V	75	-	-	%
功率管内阻	R	VBATT=3.6V, ISW=1A	-	65	100	mΩ
升压开关电流	I _{LX}	VBATT=4.2V	3.5	4.5	5	Α
线性调整度	ΔV_{LINE}	IOUT=1A,V _{BATT} =3.2V 到 4.5V	-	0.2	-	%
负载调整度	ΔV_{LOAD}	VBATT=3.6V,IOUT=10mA 到 1A	-	0.22	-	%
过热关断温度	T _{SHD}	VBATT=3.6V, IOUT=100mA	143	153	163	$^{\circ}$
过热关断迟滞	Δ T _{SHD}	VBATT=3.6V, IOUT=100mA	20	25	30	$^{\circ}$
自动关机判定电流	I _{SHUTDOWN}	VBAT=4.0V	-	20	-	mA
自动关机等待时间	T _{SHUTDOWN}	IOUT=0mA http://www.goodark.asi	-	16	-	S

参数	标号	条件	最小	典型	最大	单位
Charger 电学参数					•	
输入电压	V _{IN}		4.35	5	6	V
松)山沙	IQ	待机模式 VIN<4.35V	50	60	70	μA
输入电流	I _{STB}	充电结束	0.83	0.92	1.2	mA
	I _R	反灌电流,VBATT>VIN	0	0.01	0.1	μA
电池端电流	I _{OFF}	VIN 移除	-	-	0.1	uA
	I _B	待机模式 (充电结束)	150	200	250	μΑ
电流检测端压差	V _{SENSE}	3V <vbatt<4.18v< td=""><td>90</td><td>100</td><td>110</td><td>mV</td></vbatt<4.18v<>	90	100	110	mV
恒流充电电流	I _{CHARGE}	VBATT<4.18V	-	V _{SENSE} /RS	-	Α
欠压限流触发电压	VIN- _{UVLI}	VIN 由高到低调节	-	4.8	-	V
与に加みぬ はも 沈		4.6V <vin<4.8v< td=""><td>-</td><td>-</td><td>1</td><td>Α</td></vin<4.8v<>	-	-	1	Α
欠压限流峰值电流	I _{UVMAX}	4.35V <vin<4.6v< td=""><td>-</td><td>-</td><td>0.5</td><td>А</td></vin<4.6v<>	-	-	0.5	А
USB模式峰值电流	I _{USBMAX}	VIN<4.6V 出现 4 次之后	-	-	0.5	А
充电截至电流	I _{END}	VBATT>4.2V	50	65	80	mA
涓流充电极限电压	V _{TR}	VBATT Rising	2.8	2.92	3	V
涓流充电迟滞电压	Δ V _{TR}		60	80	110	mV
输出控制电压	V _{FLOAT}	0°C <ta<85°c, ibat="40mA</td"><td>4.158</td><td>4.2</td><td>4.242</td><td>V</td></ta<85°c,>	4.158	4.2	4.242	V
电池再充电电压	V _{RECHARGE}	VBATT falling	-	4.07	-	V
电池再充电迟滞电压	Δ V _{REG}	VBATT - V _{RECHARGE}	90	130	170	mV
振荡器频率	Fosc	RL=100mA	1.35	1.5	1.65	MHz
电源低电压闭锁	V _{UVLO}	VIN 由低到高调节	4.3	4.35	4.45	V
电源高电压闭锁	V _{INOVP}	VIN 由低到高调节	6.4	6.5	6.6	V
电池高电压闭锁	V _{BOVP}	电池电压从 VIN 到低调节	4.32	4.37	4.42	V
LED 电学参数	•		•	•	•	
电量指示电流	I _{LED}	VBAT=3.4V~4.2V	2.5	3	3.5	mA
电流匹配度	Δ I _{MATCH}	VBAT=3.6V	-	5	-	%
手电LED电流	I _{torch}	VBAT=3.2V-4.2V	-	-	50	mA

■ 工作原理

LN1001 是一款集成了 DC/DC 充电管理, DC/DC 升压,电压检测和电量显示的单芯片移动电源方案。它把原来需要 3 颗以上的芯片才能完成的功能整合在同一个芯片里。性能上,充电电流可以设置最大 2A,升压输出电流最大也可以达到 1.5A,而关机功耗几乎为 0(小于 1uA)。

● 按键操作:

单键控制, 关机状态下, 短按 Key (短按时间大于 60mS 小于 2S), 开机并显示电量, 并开启升压。4 秒后关闭电量显示, L1 开始闪烁 (0.5Hz), 升压过程中 L1 将一直闪烁。期间短按 Key, 可以再次显示电量, 时间仍为 4 秒, 升压不受影响。

设备被充满或者负载被移除之后,经过16秒,升压自动关闭,L1闪烁停止,进入关机状态。

当电池电压低于 3.5V, 短按 Key 显示电量时, L1 将会爆闪 4S, 提醒电量不足。

升压过程中, 当电池电压低于 3.1V, 输出将自动关闭, 以保护电池不会被过放。

长按 Key(长按时间大于 2S), 打开手电功能, 再次长按 Key 关闭手电。

电池电压过低时低于 3.1V 无法打开手电和输出。但已打开的手电,在电池电压过低时不会关闭。

充电过程中, 短按操作被屏蔽, 升压模块被禁止, 但长按可以开启或关闭手电。

2000年1,2000年10日1000年10日10日10日10日10日10日10日10日10日10日10日10日10日1					
工作模式	功能	短按(60ms <key<2s)< th=""><th>长按(Key>2S)</th></key<2s)<>	长按(Key>2S)		
	升压	/	/		
充电模式	电量显示	/	/		
	手电	/	开启或关闭		
	升压	开启	/		
升压模式	电量显示	显示 4S	/		
	手电	/	开启或关闭		

● 电量显示:

LN1001 在升压或者充电过程中,对 BATT 的电压进行监测,并进行计算,通过 L1-L4 显示出当前电量,每个 LED 代表 25%的电量。电池的充放电曲线,如下图

充电时, 电量显示如下表

电池电压	指示灯个数	图示(L1L2L3L4)
<3.72	L1 闪烁	
3.72-3.87	L2 闪烁	
3.87-4.02	L3 闪烁	
>4.02	L4 闪烁	
充电结束	4个灯长亮	

(■表示长亮,□表示关闭,▲代表充电闪烁,频率 1HZ,脉宽 0.5S)

升压

Taiwan Goodark Technology Co.,Ltd

.时,			
	电池电压	指示灯个数	图示(L1L2L3L4)
	>3.85	4 个灯	
	3.85-3.71	3 个灯	
	3.71-3.55	2 个灯	
	3.55-3.43	1 个灯	
	3.43-3.2	闪烁告警	♦ □□□
ı,	3.2 以下	关机	

(■表示长亮,□表示关闭,◆代表低压告警闪烁,频率 4HZ)

电量显示 4 秒钟之后, L1 进行升压指示闪烁, 周期 2S, 脉宽 0.25S, 其他 LED 熄灭。以上电压参数仅作参考,实际因为电池的不同和生产批次的不同会有电压上的差别。

● 充电模式:

内置的恒流恒压锂电池充电管理,通过 PWM 控制的电流模 DC-DC 拓朴结构来实现,充电电流由外部连接在 VBATT 和 SENSE 两端的电阻来设置,芯片内部由一个高精度的基准来设置充电电压。

当输入电压 VIN 低于 UVLO 电平(4.35V)时,芯片进入 SLEEP MODE 工作,此时芯片功耗降到 60 µA 以下。当 VIN 引脚电压上升到 UVLO 电压以上时,芯片进入充电模式,此时 L1-L4 显示充电闪烁。当 VIN 高于 UVLO 电压但低于 4.6V 时,输入端的峰值电流将会被限制在 500mA 以内,当 VIN大于 4.6V 但小于 4.8V,输入端的峰值电流将会被限制在 1A 以内。只有当 VIN 超过 4.8V 才会进入全电流模式。如果在充电开始之前检测到 VIN>4.75V,但充电过程中如果 VIN 出现 4 次低于 4.6V,则判定为 USB 模式,输入端的峰值电流将会被限制在 500mA 以内,此时即使 VIN 升高到 4.6V 以上,电流也不会增加,除非重新加载 VIN(拔除充电器之后再插上)。

如果电池电压低于涓流充电阈值电压(2.9V),充电器进入涓流充电模式,涓流充电设定为 25% 的最大充电电流。当电池电压超过涓流充电阈值,充电器进入恒流充电模式,此时的充电电流由内部的 100mV 基准和外部的检测电阻来决定,计算公式如下: I_{CHARGE}=100mV/RS。

当电池电压靠近目标值 4.2V,芯片充电电流开始下降并进入 LDO 恒压充电模式,当电流下降到 65mA 时停止充电,L1-L4 全亮。在电池未离开 BATT 端且电池电压下降到 4.07V 时,芯片会自动进入 RECHARGE 状态,重新开始充电周期。

一旦进入充电模式,升压电路便会自动停止,此时短按操作被屏蔽,但长按可以打开或关闭手电。

● 升压模式:

在关机状态下,短按 Key 或者侦测到负载接入,升压电路开始工作。升压电路采用 PWM 电流模和 PFM 电压模自动切换,可在较宽负载范围内高效稳定的工作。内置一个 4.5A 的功率开关,锂电池供电最大可以提供 1.5A 的输出电流,且效率达到 90%(最高可达 95%)。

SHUTDOWN 引脚配合外置 NMOS 管,实现功率通路的彻底关断功能。当芯片正常工作时,SHUTDOWN 为高电平,VOUT-作为负载地使用。在芯片关机或者工作异常状态(诸如短路保护等),SHUTDOWN 端将下拉为低电平,功率通路实现彻底关断。

SHUTDOWN 端不使用时请保持悬空,禁止接到 GND 或者 VBATT 端。

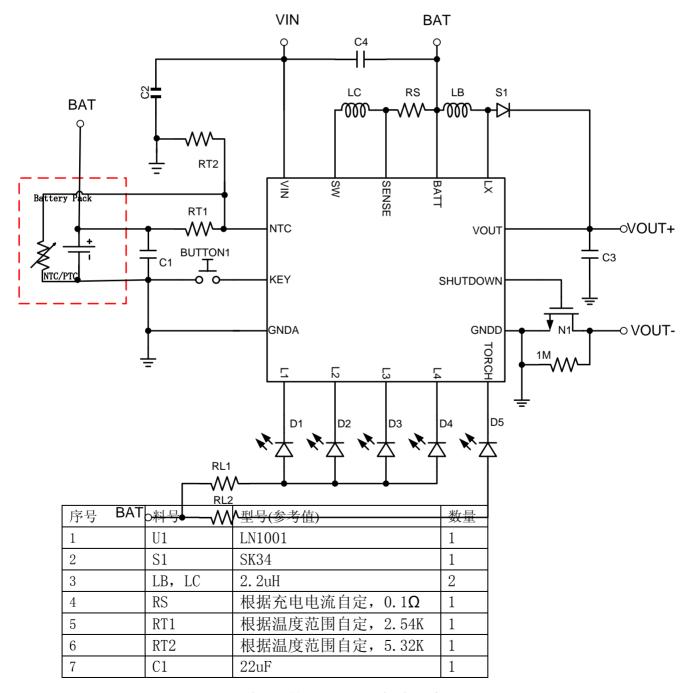
配合 SHUTDOWN 功能使用的外置 NMOS 管,需要甚小的导通电阻 RDSON,以确保较高的负载效率和理想的短路保护功能。

升压工作时,如果检测到 VIN 有大于 1.6V 的电压,则认为进入充电模式,SHUTDOWN 立即拉低,输出通路关闭。当 VIN 移除之后,需要重新按键才恢复升压工作。

升压启动后,如果检测到输出负载电流很小(小于 20mA),而且维持这个状态超过 16S,芯片认为是空载状态,自动进入待机模式,此时静态功耗几乎为 0。

■ 温度保护

LN1001 内置温度补偿电路,当内部温度达到 100℃,最大充电电流或者最大输出电流随着温度上



升会随之下降,降低了芯片热击穿的可能,提高芯片级系统的可靠性。当温度升高到 150°C,芯片进入温度保护,切断输出或停止充电。

芯片还带有电池温度检测功能,此功能通过 NTC 端来实现。VBATT 接分压电阻 RT1 和 RT2,在 NTC 端接一个负温度系数的 $10 \mathrm{K}\Omega$ 热敏电阻 RNTC (MF103F338F),RT1 和 RT2 要根据电池的温度监测范围和热敏电阻的电阻值来确定。

该引脚可以直接接到 GND,来屏蔽该温度检测功能。

■ 应用信息

http://www.goodark.asia

8	C2	22uF	1
9	C3	47uF	1
10	C4	1uF	1
11	N1	MOSFET N, LN2312	1
12	D5	50mA 高亮 LED	1
13	D1~D4	LED灯(红/蓝/绿)	1
14	RL1	限流电阻, 100Ω	1
15	RL2	限流电阻,330Ω	1
16	BUTTON1	BUTTON , K1	1

● 元器件的选择:

1.升压电路输出电容 C3 的选择。 输出电容的选择决定于输出电压纹波。在大多数场合,要使用低 ESR 电容,如陶瓷和聚合物电解电容。如果使用高 ESR 电容,就需要仔细查看转换器频率补偿,并且在输出电路端可能需要加一额外电容。

2.电感 LB、LC 材质/值的选择。 因为电感值影响输入和输出纹波电压和电流,所以电感的选择 是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流 额定值进行选择,使其大于电路的稳态电感电流峰值。

3.升压转换器要选快速正向压降低的肖特基整流二极管,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电流。

4.MOSFET N 尽量选用内阻小,开关速度快的,使其功耗低并且效率高,并且做好散热处理。 LN2312 为 N 沟道增强型场效应管,RDSON=27mohm@VGS=3.6V,可满足使用条件。

5、温度保护分压电阻 RT1/RT2 的选择

VBATT 接分压电阻 RT1 和 RT2, 在 NTC 端接一个负温度系数的 10KΩ 热敏电阻 RNTC (MF103F338F), RT1 和 RT2 要根据电池的温度监测范围和热敏电阻的电阻值来确定。

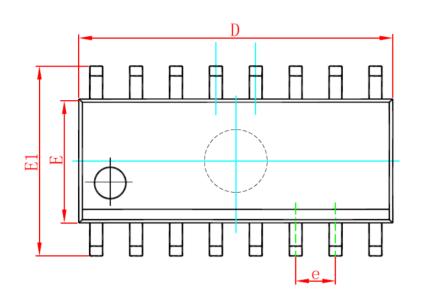
假设设定的电池温度范围为 TL~TH, (TL<TH); 负温度系数的热敏电阻 (NTC), RTL 为其在温度 TL 时的阻值, RTH 为其在温度 TH 时的阻值, RTL>RTH。

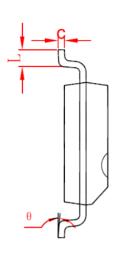
在温度 TL 时,NTC 端的电压 V_TL 为:
$$V_TL = VIN \times \frac{RT2//RTL}{RT1 + RT2//RTL}$$

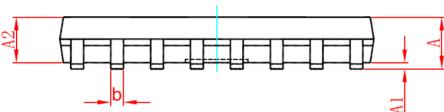
在温度 TH 时,NTC 端电压 V_TH 为:
$$V_{-}TH = VIN \times \frac{RT2/\!\!/RTH}{RT1 + RT2/\!\!/RTH} \; ,$$

$$V_{-}TL = \frac{2}{3}VIN$$
 $V_{-}TH = \frac{1}{3}VIN$ $RT1 = \frac{3 \times RTL \times RTH}{2 \times (RTL - RTH)}$ $RT2 = \frac{3 \times RTL \times RTH}{RTL - 2 \times RTH}$

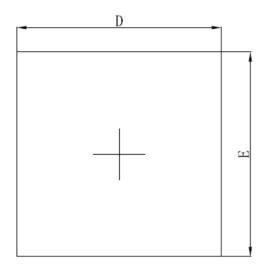
同理,如果电池采用正温度系数(PTC)的热敏电阻,则RTH>RTL,在RT1和RT2的公式中,将RTL和RTH对调即可。

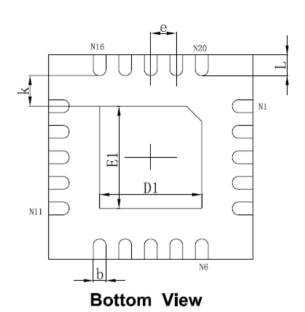

从上面的推导中可以看出,待设定的温度范围与电源电压 V_{IN} 无关,仅与 RT1、RT2、RTL、RTH 有关;其中 RTL、RTH 可通过查阅相关的电池手册或通过实验测试得到。

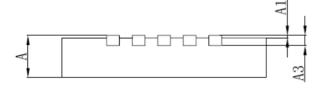

在实际应用中,若只关注某一端的温度特性,比如过热保护,则RT2可以不用,而只用RT1即可。R1的推导也变得十分简单,在此不再赘述。


举例说明:选取 NTC 电阻 10K, RT1=2.54K, RT2=5.32K。可实现-20 到 60 度范围的温度检测功能。

■ 封装信息 SOP16 PACKAGE OUTLINE DIMENSIONS




Combal	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0. 069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0. 061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0. 007	0. 010
D	9. 800	10. 200	0. 386	0. 402
Е	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°



QFN4*4-20L PACKAGE OUTLINE DIMENSIONS

Top View

Side View

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035
A1	0.000	0.050	0.000	0.002
A3	0.2031	REF.	0.008	REF.
D	3.900	4.100	0.154	0.161
E	3.900	4.100	0.154	0.161
D1	1.900	2.100	0.075	0.083
E1	1.900	2.100	0.075	0.083
k	0.200	MIN.	0.008	BMIN.
b	0.180	0.300	0.007	0.012
е	0.500	0.500TYP.		TYP.
L	0.300	0.500	0.012	0.020